
Preprint
UCRL-JC-148310

U.S. Department of Energy

Laboratory

Local Discovery of System
Architecture - Application
Parameter Sensitivity: An
Empirical Technique for
Adaptive Grid Applications

1.R. Corey, J.R. Johnson, J.S. Vetter

This article was submitted to
The 1 1 th IEEE International Symposium on High Performance
Distributed Computing (HPDCI 1), Edinburgh, Scotland, July 24-26,
2002

May 8,2002

Approved for public release; further dissemination unlimited

DISCLAlMER

This document was prepared as an account of work sponsored by an agency of the United States
Government. Neither the United States Government nor the University of California nor any of their
employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the
accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or
represents that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the United States
Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall
not be used for advertising or product endorsement purposes.

This is a preprint of a paper intended for publication in a journal or proceedings. Since changes may be
made before publication, this preprint is made available with the understanding that it will not be cited or
reproduced without the permission of the author.

This report has been reproduced directly from the best available copy.

Available electronically at htb: / /www.doc.gov/bridze

Available for a processing fee to U.S. Department of Energy
And its contractors in paper from

U.S. Department of Energy
Office of Scientific and Technical Information

P.O. Box 62
Oak Ridge, TN 37831-0062
Telephone: (865) 576-8401
Facsimile: (865) 576-5728

E-mail: reDorts@adonis.osti.PoV

Available for the sale to the public from
U.S. Department of Commerce

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900

E-mail: orders@ntis.fedworld.gov
Online ordering: http: / /www.ntis.gov/orderinz.htm

. OR

Lawrence Livermore National Laboratory
Technical Information Department’s Digital Library

http: / /www.llnl.gov/ tid/Library.html

mailto:orders@ntis.fedworld.gov
http://www.llnl.gov

Local Discovery of System Architecture - Application Parameter Sensitivity:

An Empirical Technique for Adaptive Grid Applications*

I.R. Corey, J.R. Johnson, J.S. Vetter
Computing Applications & Research Department

Lawrence Livemore National Laboratory

Abstract

This study presents a technique that can
significantly improve the performance of a distributed
application by allowing the application to locally adapt
to architectural characteristics of distinct resources in a
distributed system. Application performance is sensitive
to system architecture- application parameter pairings.
In a distributed or Grid enabled application, a single
parameter configuration for the whole application will
not always be optimal for every participating resource.
In particular, some configurations can significantly
degrade performance. Furthermore, the behavior of a
system may change during the course of the run. The
technique described here provides an automated
mechanism for run-time adaptation of application
parameters to the local system architecture. Using a
scaled-down simulation of a Monte Carlo physics code,
we demonstrate that this technique can conservatively
achieve speedups up to 65% on individual resources and
may even provide order of magnitude speedup in the
extreme case.

1. Introduction

The interaction between the parameterization of an
application and the architectural characteristics of the
system on which the application is running is of
fundamental importance to the overall performance of
the application. For a distributed application,
performance inequities between different resources due
to favorable and unfavorable application parameter -
system architecture pairings can significantly affect
overall performance.

* This work was performed under the auspices of the U. S.
Department of Energy by the University of California Lawrence
Evermore National Laboratory under contract No. W-7405-Eng-
48.

There is currently no general theoretical model for
predicting performance based on parameter -
architecture pairings. However there has been success
with using empirical methods, ([l], [5], [SI, [lo], [13]).
These empirical systems perform extensive testing of a
range of parameter values when they are installed on
distinct architectures. In a heterogeneous, distributed
environment, performing the empirical test at installation
time is neither practical nor is it always possible. A
single parameter configuration for the whole application
will not always be optimal for every resource
participating in a distributed computation. Resource
characteristics may not be known at scheduling time and
resources may come and go throughout the computation.
In addition, executables may be staged rather than
existing as highly tuned software already installed on a
resource.

By using a combination of micro benchmarking,
performance assertions and sensitivity analysis, the
technique presented here allows a locally scheduled
application component to adapt at run-time to the
resource to which it has been assigned and then continue
monitoring its performance and adapt as necessary. This
technique is an extension of earlier empirical studies in
that it operates on a large-scale application and is applied
at run-time rather than install-time.

The technique works as follows, (Figure 1): The
application code is instrumented with performance
assertions at positions in the code where system and
problem parameters can be dynamically varied, (e.g.
between time-steps, or modes such as grid generation
and time dependent simulation).

When an instance of the application is deployed on a
local resource in a distributed environment, it first runs a
micro benchmark varying problem parameters one at
time and finds the parameters that have the greatest
affect on performance. This micro benchmark can either
be performed within the application itself or by a
separate benchmarking tool included as a library to the
application.

From the aggregate benchmark data the best
parameter configuration for the local resource is
determined and the application is modified to use this

¶

configuration. In addition, performance assertion bounds
and handlers are set using the micro benchmark results.

After the micro benchmark phase is complete and
the configured application is running, if the code fails to
meet a performance assertion based on the original micro
benchmark, then control is transferred to a function
registered with the performance assertion that decides
whether or not to modify a parameter value. Should the
function determine that it is necessary to vary a
parameter value, then additional benchmarking is
performed beginning with the parameters to which
performance is most sensitive. A new configuration is
constructed and the application is modified to reflect the
changes in the system behavior.

At runrime co&woms
mim benchmark fojind
parame fer-sysfem sensifiuity.

Alim benchmark
resulfs used to sekd
paramefer vafues and
conJgutzwormana
asserfin bound.

:*-
Parameter Performance Assertion

Values Assertion Handlers
Bounds

t

bestparame fm vafues.
PMomana assetfims
are consfmckd

Assertion hand& mgy
inifiafe new mim
benchmark

Figure 1. Illustration of Adaptive Application
Technique

2. Related Work

An initial attempt at a formal framework for
parameterized architecture adaptive algorithms was
described by Ueberhuber and Krommer, ([SI). More
recently, tangible empirical results on homogeneous,
static architectures have been presented in ([l], [5], [9],
[13]). Netsolve, ([2]), is a network tool designed to map
a problem to the best available resource in a distributed

environment based on network performance. NWS,
([14]), and Globus ([4], http://www.globus.org) provide
information on the status of networks and the availability
of servers. The &ADS project
(http://nhse2.cs.rice.edu/~rads/) is addressing issues of
application performance and performance contracts on
computational grids. Recently the &ADS project has
presented a framework for adaptive Grid programs, ([7]).
Code instrumentation and dynamic steering is explored
in U61, [111).

3. Monte Carlo Simulation

The simulation used here is designed to emulate a
large-scale Monte Carlo physics code under
development at LLNL. The simulation models the
computation-communication structure of the Monte
Carlo code, but does not perform any of the physics. It
is primarily used for rapid prototyping and testing new
communication ideas before they are fully implemented
in the larger Monte Carlo code. Both the actual code and
the simulation are structured in a communicate, work,
reduce cycle. This iterative structure simplifies the
adaptive process by allowing the adaptation to take place
between iterations.

For this experiment only communication parameters
were investigated. Both the simulation and the Monte
Carlo code have been constructed so that it is easy to
dynamically change communication and MPI parameters
(e.g. type of send, buffer size, etc ...).

4. Micro Benchmark Description

For the results described here three separate
experiments were run varying, message size, type of
send, “message factor” and “send buffer.”

For the first set of experiments, message size was
held constant at 1 MB. In the second set, it ranged
between 1, 2, 4 and 8 MB. In the third set, it ranged
between 64, 128, 256, and 512 KB. Type of send was
varied between Irsend, Isend, Issend. Message factor, is
the number of equally sized units by which the message
is divided. For example, with a 1MB message, a
message factor of 2 sends 2 512K messages. A message
factor of 4 sends 4 256K messages, etc. The results
from all experiments presented here use message factors
of 1,2,4 and 8. Send buffer is the number of sends held
in the buffer before waiting. The results presented here
use send buffers of 0,4,7, 10, in the first experiment and
0, 32, 64, and 96 in the second and third. Holding all
other parameters constant and just varying these four one
at a time generated a total of 48 tests (4*4*3) per run on
each of 2 architecture in the first experiment and 192

2

http://www.globus.org

(3*4*4*4) tests on each of 3 architectures in both the
second and third experiments.

The first of these tests were run on two distinct
architectures: 3 nodes/:! processors per node of IBM’s
ASCI Blue Pacific and 4 processors on a single node on
LLNL’s GPS Cluster (Compaq ES45 with 4 lGHz
EV6.8 processors). The second and third group of tests
were run on 2 nodes / 2 processors per node of IBMs
ASCI Blue Pacific, 2 nodes / 2 processors of IBM’s
ASCI White and 4 processors on a single node of
LLNL’s Tera Cluster which consists of 32 Compaq
Alphaserver and DS20 systems. For each test we ran
the code for 100 iterations and measured wall-clock
time, MPI-time and throughput.

5. Results

Results described here are from multiple runs of the
micro benchmark using the simulation code.

The first thing the results show is that each
architecture has a distinctive ‘signature’ that can be seen
by plotting total application time as a function of the
application parameters, (Figure 2, Figure 3). The x-axis
in these figures is an index into the parameterization,
while the y-axis is the total run-time associated with the
parameterization. The sort order for the x-axis is: (send
type, message factor, send bufler, message size). For
example, the first four points on each of the graphs in
Figure 2, correspond to the following parameterizations
(Zrsend, I , 0, I), (Zrsend, I , 0, Z), (Zrsend, I , 0, 4) and
(Zrsend, I , 0, 8). At the 5* point, send buffer varies from
0 to 32. At the 17* point, message factor varies from 1
to 2, and at the 65* point send type varies from Irsend to
Isend.

While these signature capture the distinction
between architectures, similarities can also be seen with
the greatest similarity between ASCI Blue and ASCI
White. In all cases, send type stands out as a distinctive
feature and forms the 3 prominent groupings seen in
each of the figures. For a given send type in the second
series of experiments, message factor and message size
are the dominating performance features on the ASCI
machines with message factor = 1 outperforming 2, 4
and 8 in the second series of experiments, (Table 1). For
the third set, message size dominates performance. On
the Compaq machines, message size also has a more
noticeable impact within send type.

Drilling down into the data makes these
observations clear and shows that although ASCI Blue
and White have similar profiles, there are important
performance differentiators between these two
architectures.

Table 1. ASCI White message factor
performance per send type.

5.1 ASCI White & Blue

From the signature graphs, one can clearly see the
three major groupings due to send type (Irsend, Isend,
Issend), (Figure 2). Within each of these groups, the
lower cluster of points are message factor = 1. An
important distinction between White and Blue can be
seen in the White data for Irsend, message factor 8, (end
of the first grouping in Figure 2), which shows a stronger
sensitivity to message size than Blue has. Another
distinction can be seen within the message factor
grouping. On White the points on the bottom of the
grouping (i.e. the best performing) all correspond to
message size of 1, while those along the top of the
grouping (i.e. the worst performing) all correspond to
message size of 8. In contrast, on Blue, the best and
worse performing message sizes per message factor
differ per message factor. For message factor >1 they
are the same as White, however for message factor = 1,
they are obtained at message size 4 and 2 respectively.
On both White and Blue, send buffer size has almost no
effect.

From this we can see that changing message factor
from 8 or 4 to 1 on White while keeping all other
parameters constant can improve performance by a
significant amount, (Table 2).

3

Table 2. ASCI White speedup by changing
adapting message factor

Send
Irsend

Similarly, varying message factor on Blue can
produce significant speedup, (Table 3).

MB buffer Clock(s)
8 1 0 113.88

I Type of I Size I MF I Send I Wall I

I I I

Irsend 1 8 1 8 1 0

Isend 4 1 6 4

Isend 4 8 6 4

Speedup

Speedup
157.55
38 %

104.325

147.125

41 %

Send
Irsend

Within a single message factor grouping, a change
in message size can also have a noticeable effect, (Table
4).

KB buffer Clock(s)
512 1 32 30.385

Type of
Send
Irsend

Isend 137.8

Isend 154.775

Size MF Send Wall
MB buffer Clock(s)
1 2 0 138.15

Isend 512 2 32
Isend 512 8 32

Results on ASCI White fiom the thiid series of
experiments varying message size from 64K to 512K can
be seen in Figure 4. This also offers a distinctive

49.91

42.04

signature. In contrast to the first series, message size
rather than message factor is the dominant factor for
performance. Varying send type does not offer variation
in performance. However, as in the first set of tests,
(Figures 2 and 3), message factor does contribute
significantly to performance, (Table 5). Contrasting the
results for message sizes greater than lMB, message
factors of 1 and 8 perform better than message factors of
2 and 4 for all problem sizes tested in the range 64K -
512K. Once again, send buffer has no noticeable effect
on performance.

In the third series of experiments, ASCI Blue results
show a very similar pattern to ASCI White, (Figure 5),
with message size being the primary performance driver
but message factor making a significant difference for a
given message size. (For Figures 4 and 5, parameter
index sort order is send type, message size, message
factor, send buffer). An interesting distinction between
White and Blue is in the case of message factor 4. On
ASCI Blue, a message factor of 4 was consistently the
worst for a given send type and a given message size,
whereas on ASCI White, message factor 2 was the worst
for each send type and message size.

I Type of I Size I MF I Send I Wall

Speedup 12 %

Irsend 49.91

Speedup
Isend 35.23

I I I I I I I Isend I512 12 I32 I 49.865 I
I I

Speedup
Issend 34.435

Issend 42.07

I Speedup 122% I

Speedup 124% I
Table 5. ASCI White speedup by adapting

message factor

5.2 Compaq

The results on the Compaq machines are not as
separable as those on the IBM ASCI machines.
However, discernable patterns are still evident. Like the
ASCI machines, there is an observable distinction

4

between send type, more noticeable in the signature
graph from the first experiment with the extreme values
removed (Figure 3). Message size is a stronger
differentiator than message factor. For Issend, a
message size of 4MB consistently performed the best.
However, for Irsend, 4MB almost always performed
worst, but 1MB message size consistently performed the
best. For Isend, 8MB was the best message size, (Table
6).

Type of
Send
Irsend

Irsend

Issend

Isend

Size Max(s) Min (s) Ave(s)
MB
1 168.65 127.846 140.98
4 1196 139.729 614.157
4 164.483 149.004 154.31
8 220.842 166.733 184.09

I I I I I I

Architecture

ASCI White

ASCI Blue
Tera

GPS

Table 6. Compaq Tera Cluster performance as
a factor of message size

Worst Best Params Speedup
Params Performance
Performance (s)

102.225 58.255 75%
158.455 104 52%
2034.321 100.521 20x
525.888 144.858 3 .6~

(s)

The third set of tests with smaller message sizes also
shows sensitivity to both send type and message size,
(Figure 6). For a 64K message, with message factor 1
and send buffer 0, Isend performed remarkably better
than other send types, (Table 7). There is also a
significant speedup from the fastest Irsend to Isend.

Send
Irsend

KB buffer Clock(s)
64 1 0 42.946

I I I I

Isend 164 11 10 17.158
Speedup
Issend 64 1 0
Isend 64 1 0

speedup
Irsend 164 11 l o

6x
27.029
7.258
58 %

16.752
Isend

The horizontal lines in Figure 6 correspond to
distinct message sizes and the stability in these regions
clearly show the sensitivity to message size. One
interesting distinction is for Isend, message size 256K,
(points 97 - 112 along the x-axis of Figure 5). The
higher horizontal line in this grouping corresponds to
message factors of 1 and 2, while the lower line

64 1 0 7.158

corresponds to message factors 4 and 8 with a 20%
performance jump from the fastest in the message factor
1 or 2 group and the slowest in the message factor 4 or 8
group-

The results from the smaller GPS profile show a
similar sensitivity for send-type but send buffer had a
more significant effect on performance with all instances
of send buffer=O significantly outperforming tests with
send buffer > 0, (Table 8).

Speedup

Min (s)

216.121 144.858

525.888 325 -55 8

>2x

I I

150% I I Minimum speedup
Table 8.GPS speedup adapting send buffer size

For each of the architectures, the difference between
the worst parameterization and the best parameterization
is quite significant, (Table 9)

6. Conclusions

These results show that for a given application,
different architectures exhibit sensitivity to different
parameters in a program’s configuration. By changing
the appropriate parameters for the given architecture,
performance can be significantly improved. In the
simple simulation studied here, a conservative speedup
of from 12 % to 65% on a single resource is achieved.

While a good configuration for a particular
architecture can often be discovered analytically, the
complexity of building a rules system to handle every
possible scenario can be unwieldy. Sometimes results
are unexpected but not unreasonable. This complexity
and the fact that in a heterogeneous distributed
computing environment, resource characteristics may not
be known even at run-time lead to the conclusion that an
empirical approach is the best for dynamic application

5

configuration. The simulation described here shows that
running application-specific micro benchmarks on the
actual system offers a good mechanism for determining
the effect of parameter-architecture pairings and finding
parameters to which the architecture is most sensitive
thus allowing the application to run using a good
configuration on the local system.

For complex codes, a stand-alone micro benchmark
such as the simulation described here is a good tool for
discovering the behavior of a system. For codes that
have clear delineation of behavior (e.g. a computation
phase followed by a communication phase), the code
itself may be used to perform the initial micro-
benchmark.

One of the challenges in evaluating micro
benchmarks is choosing a metric to evaluate the system.
Wall clock time is not always the best metric. This
difficulty can be addressed by including data from
system utilities such as hardware performance counters
in the benchmarking phase. This benchmark data can be
used to construct performance assertions that are inserted
between time-steps to determine whether the behavior of
the system is .consistent with the original micro
benchmark. If not, the performance assertion will
execute a handler function to rerun the micro benchmark
and re-configure the application if necessary.

Performance assertions [12] are an important
component of this technique since they allow the
application to continually monitor its operation and
adapt as necessary. Performance assertions measure
empirical performance data for individual operations
within the application and if those measurements fail
some user-defined expectation, they react using a variety
of methods. The performance expectation is an
expression that compares the measurements using a
relational operator. The expression can include measured
performance data, architectural specific data (e.g., peak
rate), micro benchmark data (e.g., sustained rate),
constants, and various operators. The method that we use
here invokes an application subroutine to affect a change
in the application. A real-world application may change
its behavior over the course of the run and a different
configuration may be optimal. As an example take the
profile for ASCI White Irsend: If the program were to
change its message size from 8MB to 1MB and the
current message factor were 8, there would be a
noticeable degradation in performance. For this example,
performance assertions would invoke a user-defined
subroutine that modifies the parameters to which the
particular architecture is most sensitive: in this case,
message factor or send type. For either case,
performance would improve. In this way, performance
assertions assist the application in adapting to its local
resource throughout the course of the run.

The micro benchmark is essential in building the
performance assertions and constructing the handler
functions that adapt the application while it is running.
In the results presented here, the micro benchmark
shows that send buffer does not have any appreciable
effect on performance for the IBM machines, however it
does on the Compaq GPS. Thus when adapting the
application on the IBM machines, message size and
message factors are the parameters that are modified first
to improve performance, while on the Compaq, send
buffer may be retained as a parameter to vary. Similarly,
on the IBM machines, varying send type does not have
as direct an effect on performance as does message size
and message factor, but it does show some performance
variation on the Compaq Tera cluster. The results of the
micro benchmark yield a list of parameters ordered by
sensitivity which allows the adaptation phase to start by
manipulating the parameters to which the application -
architecture pairing is most sensitive and essentially
ignore (unless everything else fails) the parameters to
which it is least sensitive.

7. Futurework

The results presented here are based on a handful of
communication parameters. There are many more
parameters that can be varied. In addition there are non-
communication parameters that may also significantly
affect performance (e.g. threads, problem size, array
strides and blocking etc ...). Choosing the best
parameters to use in the micro benchmark is an area for
further exploration.

Another area that needs additional study is the
construction of the adaptation functions registered with
the performance assertions. The approach described
here is a ndive one that simply starts with the most
sensitive parameter and varies it until something
improves. If there is no improvement, it switches to the
next most sensitive parameter and so on. A more
sophisticated sensitivity analysis may offer greater
insight and allow the application performance to
converge faster. As can be.seen in this study, some
variations are non-linear (the effect of message factor on
the ASCI White and Blue results presented in Figure 4)
or singular (sensitivity of ASCI White to problem size
only for message factor 8, Irsend in Figure 2) so finding
a good sensitivity model that can guide the adaptation
phase is an important area for further research.

Extending this study by including more exotic
architectures might be fruitful. The fact that such similar
architectures as those used here can have such distinct
profiles illustrates the usefulness of this technique, but
comparing sharply contrasted architectures may lead to
additional insight.

6

The Monte Carlo physics code has been
instrumented and tests are being run to see how the full
application results compare to the simulation results.
The next step after this is to implement this study in a
fully distributed testbed to explore how the local
adaptation contributes to overall performance
improvement.

8. Bibliography

[l] J. Bilmes, K. Asanovic, C-W. Chin, J. Demmel,
‘‘Optimizing Matrix Multiply using PHPAC: a Portable,
High-Performance, ANSI C Coding Methodology.”,
International Conference on Supercomputing, 1997.

[2] H. Casanova, J. Dongarra. “Netsolve; A Network Server
for Solving Computational Science Problems.”, Znternational
Journal for Supercomputer Applications and High
Pegormame Computing, vol. 11, no. 3, 1997.

[3] I. Foster, C. Kesselman, eds., The Grid: Blueprint for a
New Computing Infrastructure. Morgan Kaufinann, San
Francisco, 1998.

[4] I. Foster, C. Kesselman, Globus: “A Metacomputing
Instrastructure Toolkit.” International Journal of
Supercomputer Applciations, vol. 11, no. 2,1997.

[5] M. Frigo and S . G. Johnson, “FFIW: An Adaptive
Software Architecture For The FlT.” ICASSP, vol. 3,1998.

[7] K. Kennedy, M. Mazina, et. al., ‘Toward a Framework
for Preparing and Executing Adaptive Grid Programs”,
International Parallel and Distributed Processing Symposium.
2002. (to appear)

[8] A. R. Krommer, C.W. Ueberhuber, “Architecture Adaptive
Algorithms”, ParaZZeZ Computing, vol. 19,1993.

[9] D. Mirkovic, S. L. Johnsson, “Automatic Performance
Tuning in the UHFFT Library”, International Conference on
Parallel Computing, 2001.

[lo] S. S. Vadhiyar, G. E. Fagg, and J. Dongma,
“Automatically Tuned Collective Communications”,
Supercomputing, 2000.

[ll] J. S. Vetter, D. A. Reed, “Real-time Performance
Monitoring, Adaptive Control and Interactive Steering of
Computational Grids”, The International Journal of High
Pegonnance Computing Applications, vol. 14, no.4,2000.

[12] J. S. Vetter and P. Worley, “Performance Assertions: a
Performance Diagnosis Tool,” Submitted., 2002.

[13] R. C. Whaley, A. Petitet, I. J. Dongarra, “Automated
Emprical Optimizations of Software and the ATLAS Project.”
Parallel Computing, vol. 27,nol-2,2001

[14] R. Wolski, N. Spring, J. Hayes, “The Network Weather
Service: A Distributed Resource Performance Forecasting
Service for Metacomputing.” Journal of Future Generation
Computing Systems, vo1.15, no. 5-6, 1999.

[SJ J. K. Hollingsworkth, P. Keleher, “Prediction and
Adaptation in Active Harmony”, Cluster Computing, vol. 2,
1999.

7

I 0 x) 40 60 80 100 120 140 160 180 200
R.m.(u lndl

0 50 100 150

Figure 2. ASCI White & Blue (1MB - 8MB)

1W 140 20 40 60 BO

R I M 1 - r 1nd.s

I
0 5 10 15 20 25

puamkrcdn

30 35

I
Figure 3. Tera Cluster (1MB - 8MB) and GPS

8

